Plant x Environment Interaction

Department of Plant Biotechnology

How plants respond to a changing environment

We investiagte plant responses to changes in the abiotic environments in order to understand how acclimation is brought about. Low temperatures or light intensity are a focus of our work. We use the model plant Arabidopsis thaliana that is native to Europe, where it builds various local populations that are adapted to their specific environmental conditions.
Low temperature, water deficit or soil salinity have in common that they cause dehydration of the cells. This causes solutes to accumulate, and in extreme cases can stall metabolism. Even more important is the danger of membrane damage: organellar membranes and the plasma membrane loose fluidity, when hydration of the lipid head groups is lost. Membrane rupture or membrane fusions can cause cell death.
During acclimation to low temperatures, soluble sugars are accumulated that can protect membranes and cellular proteins. We could show that individual sugars act differently in differen subcellular compartments (Knaupp et al., 2011). Distribution of sugars within the cell changes during cold acclimation (Nägele & Heyer, 2013). Mathematical simulations show that the extend of these changes is correlated with freezing tolerance.

Related Publications

  1. Hoermiller, I.I., Funck, D., Schönewolf, L., May, H., Heyer, A.G.: Cytosolic proline is required for basal freezing tolerance in Arabidopsis. Plant, Cell & Environment. (2022). https://doi.org/10.1111/pce.14196.
  2. Küstner, L., Fürtauer, L., Weckwerth, W., Nägele, T., Heyer, A.G.: Subcellular dynamics of proteins and metabolites under abiotic stress reveal deferred response of the Arabidopsis thaliana hexokinase‐1 mutant gin2‐1 to high light. Plant Journal. 100, 456–472 (2019). https://doi.org/10.1111/tpj.14491.
  3. Mishra, K.B., Mishra, A., Kubásek, J., Urban, O., Heyer, A.G., Govindjee: Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements. Photosynthesis Research. (2018). https://doi.org/10.1007/s11120-018-0588-7.
  4. Hoermiller, I.I., Ruschhaupt, M., Heyer, A.G.: Mechanisms of frost resistance in Arabidopsis thaliana. Planta. 248, 827–835 (2018). https://doi.org/10.1007/s00425-018-2939-1.
  5. Hoermiller, I.I., Naegele, T., Augustin, H., Stutz, S., Weckwerth, W., Heyer, A.G.: Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ. 40, 602–610 (2017). https://doi.org/10.1111/pce.12836.
  6. Xu, E., Vaathera, L., Hörak, H., Hincha, D.K., Heyer, A.G., Brosche, M.: Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in Arabidopsis thaliana. Plant, Cell & Environment. 38, 1418–1433 (2015). https://doi.org/10.1111/pce.12499.
  7. Mishra, A., Heyer, A., Mishra, K.: Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods. 10, 38 (2014). https://doi.org/10.1186/1746-4811-10-38.
  8. Meissner, M., Orsini, E., Ruschhaupt, M., Melchinger, A.E., Hincha, D.K., Heyer, A.G.: Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Plant Cell Environ. 36, 1256–1267 (2013). https://doi.org/10.1111/pce.12054.
  9. Distelbarth, H., Nägele, T., Heyer, A.: Responses of antioxidant enzymes to cold and highlight are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. Plant Biol. 15, 982--990 (2013). https://doi.org/10.1111/j.1438-8677.2012.00718.x.
  10. Nägele, T., Heyer, A.G.: Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana. New Phytol. 198, 777--787 (2013). https://doi.org/10.1111/nph.12201.
  11. Nägele, T., Stutz, S., Hörmiller, I.I., Heyer, A.G.: Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana. Plant J. 72, 102–114 (2012). https://doi.org/10.1111/j.1365-313X.2012.05064.x.
  12. Iftime, D., Hannah, M.A., Peterbauer, T., Heyer, A.G.: Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean. Plant Science. 180, 24--30 (2011). https://doi.org/10.1016/j.plantsci.2010.07.012.
  13. Mishra, A., Mishra, K.B., Hoermiller, I.I., Heyer, A.G., Nedbal, L.: Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signaling Behav. 6, 301--310 (2011). https://doi.org/10.4161/psb.6.2.15278.
  14. Knaupp, M., Mishra, K.B., Nedbal, L., Heyer, A.G.: Evidence for a role of raffinose in stabilizing photosystem II during freeze--thaw cycles. Planta. 234, 477--486 (2011). https://doi.org/10.1007/s00425-011-1413-0.
  15. Nägele, T., Kandel, B.A., Frana, S., Meissner, M., Heyer, A.G.: A systems biology approach for the analysis of carbohydrate dynamics during acclimation to low temperature in Arabidopsis thaliana. FEBS J. 278, 506--518 (2011). https://doi.org/10.1111/j.1742-4658.2010.07971.x.
  16. Livingston, D.P., Hincha, D.K., Heyer, A.G.: Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences. 66, 2007--2023 (2009). https://doi.org/10.1007/s00018-009-0002-x.
  17. Korn, M., Peterek, S., Mock, H.P., Heyer, A.G., Hincha, D.K.: Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ. 31, 813--827 (2008). https://doi.org/10.1111/j.1365-3040.2008.01800.x.
  18. Korn, M., Hincha, D., Heyer, A.: Heterosis in the frost tolerance of crosses between different Arabidopsis thaliana accessions. 146, S153 (2007). https://doi.org/10.1016/j.cbpa.2007.01.312.
  19. Hincha, D., Hannah, M., Le, M., Heyer, A.: Plant freezing tolerance: From gene expression to functional adaptation. 146, S151 (2007). https://doi.org/10.1016/j.cbpa.2007.01.306.
  20. Hincha, D.K., Livingston, D.P., Premakumar, R., Zuther, E., Obel, N., Cacela, C., Heyer, A.G.: Fructans from oat and rye: Composition and effects on membrane stability during drying. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1768, 1611--1619 (2007). https://doi.org/10.1016/j.bbamem.2007.03.011.
  21. Hannah, M.A., Wiese, D., Freund, S., Fiehn, O., Heyer, A.G., Hincha, D.K.: Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 142, 98--112 (2006). https://doi.org/10.1104/pp.106.081141.
  22. Hannah, M.A., Heyer, A.G., Hincha, D.K.: A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLOS Genetics. 1, (2005). https://doi.org/10.1371/journal.pgen.0010026.
  23. Zuther, E., Büchel, K., Hundertmark, M., Stitt, M., Hincha, D.K., Heyer, A.G.: The role of raffinose in the cold acclimation response of Arabidopsis thaliana. FEBS Lett. 576, 169--173 (2004).
  24. Rohde, P., Hincha, D.K., Heyer, A.G.: Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. The Plant Journal. 38, 790–799 (2004). https://doi.org/10.1111/j.1365-313X.2004.02080.x.
  25. Hincha, D.K., Zuther, E., Heyer, A.G.: The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1612, 172--177 (2003). https://doi.org/10.1016/s0005-2736(03)00116-0.
  26. Hincha, D.K., Zuther, E., Hellwege, E.M., Heyer, A.G.: Specific effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying. Glycobiology. 12, 103--110 (2002). https://doi.org/10.1093/glycob/12.2.103.
  27. Popova, A.V., Heyer, A.G., Hincha, D.K.: Differential destabilization of membranes by tryptophan and phenylalanine during freezing: the roles of lipid composition and membrane fusion. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1561, 109--118 (2002). https://doi.org/10.1016/s0005-2736(01)00462-x.
  28. Oliver, A.E., Leprince, O., Wolkers, W.F., Hincha, D.K., Heyer, A.G., Crowe, J.H.: Non-Disaccharide-Based Mechanisms of Protection during Drying. Cryobiology. 43, 151--167 (2001). https://doi.org/10.1006/cryo.2001.2359.
  29. Hincha, D.K., Hellwege, E.M., Heyer, A.G., Crowe, J.H.: Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. European Journal of Biochemistry. 267, 535–540 (2000). https://doi.org/10.1046/j.1432-1327.2000.01028.x.

Home

 

Department of Plant Biotechnology

Pfaffenwaldring 57, D - 70569 Stuttgart, Germany

To the top of the page