Metabolic Model

Friedrichs et al., 2024, Flux Calculation for Primary Metabolism Reveals Changes in Allocation of Nitrogen to Different Amino Acid Families When Photorespiratory Activity Changes

August 21, 2024 / Arnd Heyer

a sudden increase in photorespiratory activity not only reduced carbon acquisition and production of sugars and starch, but also affected diurnal dynamics of amino acids not obviously involved in the process. Flux calculations based on diurnal metabolite profiles suggest that export of proline from leaves increases, while aspartate family members accumulate.

Photorespiration, caused by oxygenation of the enzyme Rubisco, is considered a wasteful process, because it reduces photosynthetic carbon gain, but it also supplies amino acids and is involved in amelioration of stress. Here, we show that a sudden increase in photorespiratory activity not only reduced carbon acquisition and production of sugars and starch, but also affected diurnal dynamics of amino acids not obviously involved in the process. Flux calculations based on diurnal metabolite profiles suggest that export of proline from leaves increases, while aspartate family members accumulate. An immense increase is observed for turnover in the cyclic reaction of glutamine synthetase/glutamine-oxoglutarate aminotransferase (GS/GOGAT), probably because of increased production of ammonium in photorespiration. The hpr1-1 mutant, defective in peroxisomal hydroxypyruvate reductase, shows substantial alterations in flux, leading to a shift from the oxoglutarate to the aspartate family of amino acids. This is coupled to a massive export of asparagine, which may serve in exchange for serine between shoot and root.contribute to growth reduction.

https://doi.org/10.3389/fpls.2022.897924

To the top of the page